

Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering & Technology, Baramati 2025-26

Industrial Visit Report

Industrial visit to Gourav Industries in MIDC, Baramati

Dated: 26th August 2025 Time: 10:00 AM

Departments Participated: Civil Engineering, Mechanical Engineering Website of Industry: https://gouravgroup.com/gourav-industries.php

Location: https://maps.app.goo.gl/FApPbajdG16JN5zW6

1. Introduction

The faculty members of Civil and Mechanical Engineering Departments visited the Gourav Group industries located in MIDC Baramati, under the initiative of the Industry-Institute Interaction Cell (IIIC).

The Gourav Group is a diversified engineering and industrial group with expertise in construction, fabrication, turnkey projects, and dairy & food processing machinery. With its divisions – Gourav Industries, Gourav Engineers, and Gourav Process Solutions – the group caters to industries across civil, mechanical, and food technology domains.

This visit provided valuable exposure to real-world engineering practices, bridging the gap between classroom learning and industry applications.

2. Key Observations During the Visit

- ✓ Witnessed the manufacturing process of Pre-Engineered Building (PEB) components from raw material to finished products.
- ✓ Observed how PEBs are applied in large-scale industrial sheds, warehouses, and infrastructure projects such as Mumbai Metro.
- ✓ Understood the role of industrial fabrication and erection processes, along with safety protocols and quality
- ✓ Explored advanced dairy and food processing solutions designed by Gourav Process Solutions, catering to national and international clients.

3. Division-Wise Industrial Insights

Gouray Industries

Precision engineering division focusing on industrial components.

Demonstrated expertise in producing roofing sheets, PEB components, and accessories used in industrial structures.

Gourav Engineers

Specializes in fabrication, erection, and turnkey industrial construction projects.

Exposure to in-house design support, value engineering, safety practices, and use of advanced design tools. Applications across manufacturing, gas & oil, foundry, cold storage, and steel rolling sectors.

Gourav Process Solutions

Expertise in dairy and food processing plants.

Showcased R&D-driven machinery such as milk silos, butter churners, ghee boilers, evaporators, and cheese

Notable turnkey projects for Dynamix Dairy, Hindustan Coca-Cola, PepsiCo, Govind Dairy, and Bhutan Beverages.

4. Outcomes of the Visit (Linked with NBA Graduate Attributes)

Outcome	NBA Graduate Attribute (PO)	Relevance
	PO1 (Engineering Knowledge), PO2 (Problem Analysis)	
Awareness of safety standards & protocols in industrial setup	PO6 (Engineer & Society), PO8 (Ethics)	Exposure to industry safety practices ensures responsible engineering.
<u>*</u>	PO5 (Modern Tool Usage), PO7 (Environment & Sustainability)	••
Strengthened academia—industry collaboration	PO9 (Individual & Team Work), PO10 (Communication)	Visit paved the way for future MoUs, internships, and consultancy opportunities.
Faculty knowledge enrichment for curriculum delivery	PO12 (Life-long Learning)	Visit outcomes to be integrated in classroom teaching, improving student learning.

5. Acknowledgements

We express our sincere gratitude to:

- Er. Subhash Dhiman (Director, Gourav Industries) for permitting the visit.
- Er. Gourav Dhiman (Director) and his team members for detailed technical explanations and guidance during the visit.
- Hon. Principal Dr. S. B. Lande for his continuous motivation and support in arranging industry exposure for faculty.

6. Participants

Mech Dept: Dr. Parashuram Chitragar (Professor & Dean (Alumni Affairs); Mr. Keshav Jadhav, Mr. Suraj Kumbhar, Mr. Deepak Bhosale : Assistant Professors

Civil Engg Dept: Dr. Samadhan Morkhade (Assistant Professor & Dean R&D), Dr. Dhiraj Ahiwale (Assistant Professor), Mr. Dilip Patil (Assistant Professor & Head, IIIC), Er. Sai Gadhawe (Lab Assistant)

7. Conclusion

The visit to Gourav Group – MIDC Baramati proved to be an excellent opportunity for faculty to gain first-hand industrial exposure. It not only enriched technical understanding but also helped map academic learning outcomes with NBA Program Outcomes (POs).

Such initiatives under IIIC significantly contribute to strengthening industry-institute interaction, benefitting both faculty and students. Industrial visits enable faculty to align academic delivery with industry requirements, thereby fulfilling NBA's mandate of bridging the gap between theory and practice, and ensuring continuous improvement in engineering education.

8. Photos taken during visit:

Figure 1,2: Faculty interaction with Gourav Group Directors during the industrial visit.



Figure 3,4: Technical presentation on key projects of Gourav Group.

Figure 5,6: Faculty Members at the Entrance of Gourav Industries, Building Systems Pvt. Ltd.

Figure 7,8: Faculty members observing machinery setup at Gourav Industries (PEB manufacturing unit).

Figure 9,10: Discussion on roofing sheet production at Gourav Engineers workshop.



Figure 11: Structural fabrication yard (steel components for industrial sheds).

Figure 12: Explanation of fabrication process by Gourav Group engineer.

Figure 13: Inspection of Raw Material Steel Coils at Gourav Industries.

Figure 14: Faculty observing production line in action

Figure 15: Sheet Metal Cutting and Slitting Machine at Gourav Industries

This machine is employed for cutting large coils of sheet metal into flat sheets of required dimensions. The process involves uncoiling, straightening, and slitting or shearing the sheets for further processing in manufacturing. Workers are seen operating the machine and stacking the cut sheets. Safety is important as the sharp sheet edges and rotating rollers pose potential hazards.

Figure 16: Downspout Elbow Forming Machine at Gourav Industries

This machine is used for producing sheet metal downspout elbows, which are components of rainwater drainage systems. The process involves roll-forming and pressing sheet metal to achieve the required bend and profile. The operator is handling a finished elbow piece while monitoring the machine's operation. Proper precautions are necessary due to the sharp edges of sheet metal and the moving parts of the equipment.

Figure 17: Plastic Extrusion and Blow Moulding Machine at Gourav Industries

This machine is employed for manufacturing hollow plastic products like containers, tanks, and industrial components. The process involves melting plastic granules, extruding them through moulds, and inflating the shape. Workers are engaged in handling the moulded products and monitoring the operation. Proper safety measures are crucial due to the heat and moving parts involved in production.

Figure 18: Welding and Fabrication Workshop

The image shows a large-scale industrial fabrication unit where stee1 structures are being prepared. A worker in the foreground is engaged in arc welding, using protective gear such as a welding helmet to shield from sparks and ultraviolet radiation. In the background, multiple workers are involved in cutting,

grinding, and assembling steel beams. The facility is equipped with heavy-duty machinery, lifting equipment, and ventilation systems to handle large structural components. Such workshops are vital in manufacturing sectors like construction, bridges, industrial sheds, and heavy machinery.

Figure 19: Faculty and Industry Team in Front of Production Shed at Gourav Industries

Figure 20-23: Industrial Visit and Technical Discussion at Gourav Industries

This image shows a team of engineers and trainees engaged in a technical discussion on the shop floor. They are reviewing fabricated steel components and production processes. Such interactions help in understanding manufacturing practices, quality considerations, and operational challenges.

Figure 24: Technical Discussion between Faculty Members and Industry Experts during the IIIC Visit

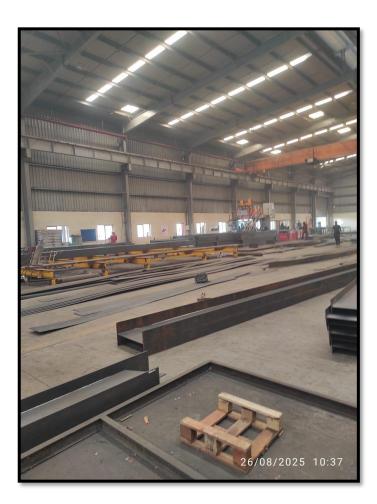


Figure 25: Structural Steel Fabrication Yard

The image shows a modern steel fabrication workshop equipped with overhead cranes and wide working bays for handling heavy structural components. Large steel plates and I-sections are placed on the shop floor for cutting, welding, and assembly. Workers and machinery can be seen in the background, engaged in preparation of steel members used for industrial sheds, bridges, and large infrastructure projects. Proper material handling systems, including rollers and lifting equipment, ensure efficiency and safety in operations.

Figure 26: CNC Plasma
Cutting Machine in
Operation

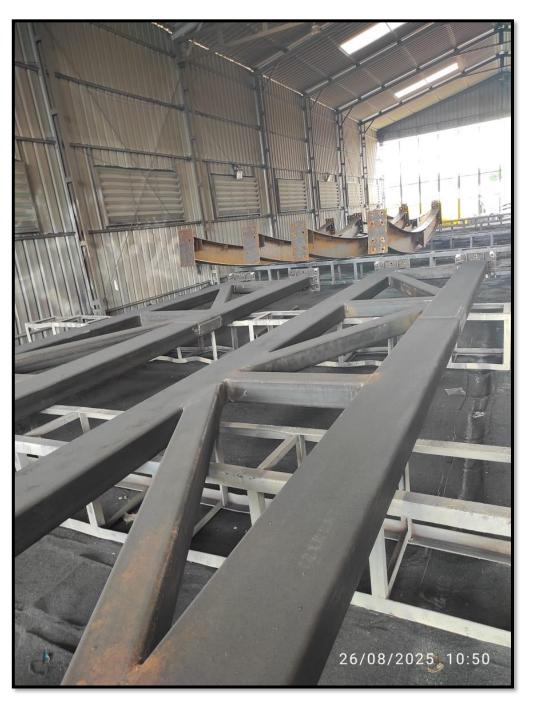

The CNC plasma cutting machine is used to cut thick plates with steel high precision using a plasma arc. It enables accurate shaping of large sheets at high speed, suitable for heavy fabrication, shipbuilding, structural steel and industries. **Operators** supervise the process while ensuring safety measures such as shielding and ventilation.

Figure 27,28: Visit to outdoor fabrication/storage site.

Figure 29: Steel Truss Fabrication and Assembly

The image depicts the fabrication of large welded steel trusses inside a covered industrial shed. The trusses are arranged on supporting frames for alignment and before inspection final assembly. These structural members, with gusset plates and bolted connections, are designed for use in industrial sheds, warehouses, or bridges.

The organized layout and systematic fabrication ensure precision, strength, and stability in the final structural system.

Figure 30,31: Faculty visit to process equipment section

Figure 32: Stacked Steel Angles and Fabricated Members Ready for Assembly

The image depicts neatly arranged stacks of steel angles and channel sections with pre-drilled holes, placed on wooden pallets at the fabrication yard. These members are cut to required lengths and prepared for further processes such as welding, drilling, and bolting during structural assembly. The organized stacking ensures ease of handling, inventory management, and prevention of warping. Such fabricated components are commonly used in trusses, purlins, bracing, and industrial shed frames, forming integral load-bearing parts of steel structures.

Figure 33: Steel Fabrication Workshop with Cutting and Bending Operations

The image shows a covered industrial shed where steel fabrication activities are carried out. Various raw steel sections, rods, and plates are stacked systematically for processing. Machines such as cutting presses, bending equipment, welding sets, and drilling machines are visible along the wall side. Workers are engaged in fabrication tasks including cutting, bending, and shaping of steel members. The layout ensures partial natural lighting

and ventilation, while safety signboards highlight occupational safety measures. This setup forms the core stage of fabrication where raw steel is transformed into structural components for industrial sheds, buildings, and infrastructure projects.

Figure 34: On-site inspection of finished components

Participant's Feedback Form – Industrial Visit:

SN	Name of Faculty /staff	Dept	Key Learnings / Observations	Benefits for Teaching– Learning Process	Suggestions for Improvement / Future Action	Overall Feedback Excellent, Very Good, Good, Satisfactory, Needs Improvement	Sign
1	Dr. Parashuram Chitragar	Mech					
2	Mr. Keshav Jadhav	Mech					
3	Mr. Suraj Kumbhar,	Mech					
4	Mr. Deepak Bhosae	Mech					
5	Dr. Samadhan Morkhade	Civil					
6	Dr. Dhiraj Ahiwale	Civil					
7	Mr. Dilip Patil	Civil					
8	Er. Sai Gadhawe	Civil					

Mr. D. G. Patil Head, IIIC Dr. C. B. Nyak Head, Civil Engineering Dr. Manisha Lande Head, Mech. Dept Dr. P. R. Chitragar Dean, Alumni affairs Dr. S. B. Lande
Principal, VPKBIET